A hybrid SA-MFO algorithm for function optimization and engineering design problems
نویسندگان
چکیده
منابع مشابه
FOA: ‘Following’ Optimization Algorithm for solving Power engineering optimization problems
These days randomized-based population optimization algorithms are in wide use in different branches of science such as bioinformatics, chemical physics andpower engineering. An important group of these algorithms is inspired by physical processes or entities’ behavior. A new approach of applying optimization-based social relationships among the members of a community is investigated in this pa...
متن کاملA Hybrid Flower Pollination Algorithm for Engineering Optimization Problems
Flower pollination algorithm (FP) is a new nature-inspired algorithm, based on the characteristics of flowering plants. Combining with the features of flower pollination algorithm, an improved simulated annealing algorithm is proposed in this paper (FPSA). It can improve the speed of annealing. The initial state of simulated annealing and new solutions are generated by flower pollination. There...
متن کاملA Hybrid Co-evolutionary Particle Swarm Optimization Algorithm for Solving Constrained Engineering Design Problems
This paper presents an effective hybrid coevolutionary particle swarm optimization algorithm for solving constrained engineering design problems, which is based on simulated annealing (SA) , employing the notion of co-evolution to adapt penalty factors. By employing the SAbased selection for the best position of particles and swarms when updating the velocity in co-evolutionary particle swarm o...
متن کاملA Hybrid Glowworm Swarm Optimization Algorithm for Constrained Engineering Design Problems
In this paper, a novel hybrid glowworm swarm optimization (HGSO) algorithm is proposed. Firstly, the presented algorithm embeds predatory behavior of artificial fish swarm algorithm (AFSA) into glowworm swarm optimization (GSO) algorithm and combines the improved GSO with differential evolution (DE) on the basis of a two-population co-evolution mechanism. Secondly, under the guidance of the fea...
متن کاملFlying Squirrel Optimizer (FSO): A novel SI-based optimization algorithm for engineering problems
This paper provides a novel meta-heuristic optimization algorithm. The behaviors of flying squirrels in the nature are the main inspiration of this research. These behaviors include flying from tree to tree and walking on the ground or on a tree branch to find food. They also contact each other with chirp or squeak. This algorithm is named flying squirrel optimizer (FSO). Two main theories of m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complex & Intelligent Systems
سال: 2018
ISSN: 2199-4536,2198-6053
DOI: 10.1007/s40747-018-0066-z